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Absh’act. To a good approximation, the x-ray reflectivity fine structure from homogeneous 
makrials was found to be. in the hard-energy range, a linear superposition of the fine structures 
of the real and imaginary pats of the refractive index. As a consequence. a simple f o m ~  for 
the extraction of the absorption fine stlucture (EXAFS) f” the reflectivity data is given. For 
a certain glancing angle, the KramewKmnig transform of the reflectivity fine struchlre is, to 
a constant factor, approximately equal to EXAFS. The magnitudes of the Fourier transform of 
lhe reflectivity fine structure and of KXAFS have for all glancing angles approximately the same 
shape. 

1. Introduction 

The increasing availability of intense x-ray sources in recent years has stimulated a growth 
in popularity of grazing incidence methods. Due to the low penetration depth of about a 
few nanometres, these methods are well suited for studies of surface layers and neamurface 
regions. One of these methods is the extended x-ray absorption fine structure spectroscopy 

As stated firstly by Barchewitz etal [l], x-ray reflectivity spectra recorded in the vicinity 
of an absorption edge exhibit a fine structure similar to the ExAFs oscillations. The more 
detailed investigations of Martens et a1 [Z] showed that compared with the absorption fine 
structure, this fine structure is modified due to the influence of the real part of the refractive 
index. Thus, the measured reflectivity spectra must be corrected in some way to obtain 
the true absorption fine structure. Heald et a1 developed a correction method based on the 
knowledge of the smooth part of the refractive index for the system of interest [3]. An 
iterative procedure combined with the Kramers-Kronig transform of the oscillatory part of 
the reflectivity was used by Poumellec et al 141. For measurements performed at glancing 
angles small compared to the critical angle, an approximative relation between the x-ray 
reflectivity and EXAFS was given [5]. 

Some of the grazing incidence EXAFS measurements reported in the literature were 
performed by recording the fluorescence radiation. However, we restrict our considerations 
to the reflected intensity: it has the advantage of being simply modelled by the Fresnel 
equations--also for layer systems-without problems caused by the radiation efficiency 
and the self-absorption of the fluorescent radiation. In this paper, we report on the x-ray 
reflectivity fine structure (ws )  for homogeneous materials in the hadenergy range, its 
relation to the fine structures of the refractive indices and the consequences for the data 
analysis. 
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(EXAFS). 
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2. X-ray reflectivity 

If the surface roughness can be neglected, the energy-dependent reflectivity of a given 
medium can be fully characterized by its index of refraction n(E) = 1 - S ( E )  - $(E) 
161. Reflectivity spectra R ( E )  recorded in the vicinity of an absorption edge at angles well 
below the critical angIe 0, = (26)”’ differ substantially from those recorded above 0, [2]. 
Aside from the absolute value of the reflectivity and the overall shape of the curves, the fine 
shucture in the reflectivity above the absorption-edge energy also changes significantly. 

As an example, reflectivity spectra recorded at 3.3 nuad and 7.7 mrad in the vicinity of 
the Ni K edge from a nickel specimen are shown in figures I(a) and (b), respectively. The 
critical angle for nickel is about 6.6 mad  (0.38 degrees) at 8200 eV. The specimen was a 
5 cm long and 0.125 mm thick metal foil (99.98’76, Goodfellow) stuck, under pressure, onto 
a float glass substrate and subsequently polished with a 40 nm Si02 suspension. Due to the 
polishing procedure, the uncertainty of the glancing angle, caused by the surface curvature, 
was about 0.1 mrad (0.006 degrees). The spectra were recorded at the HASnAB R ~ M O  2 
station (DESY, Germany) immediately after the polishing. 
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Figure 1. X-ray reflectivity spectra far a polished nickel specimen recorded L glancing angles; 
(a) below and (b) above the critical angle, respectively. 

Above the absorption edge, the x-ray reflectivity, R,  can be split into a smooth p“t, 
Ro, and an oscillatory part, A R ,  (the dashed and the solid lines in figures I @ )  and (b), 
respectively) with R = RO + A R .  For an angle of incidence 0 and a refracted angle O‘, 
the Fresnel reflectivity is given by 

where 0’ = U + iu and 

U 2  = 4 (J(0’ - 26)’ + 4 p  + ( 0 2  - 28)) 

U’ = f (40’ - 26)’ + 402 - (0’ - 26)) . 

It is evident from equations (1) and (2) that the x-ray reflectivity depends in a complicated 
manner on 8 and p .  Therefore, 6 as well as p have to be known with good accuracy as 
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functions of energy in order to calculate the reflectivity R(E) in the vicinity of absorption 
edges. 

Due to the relation @ = pk/47r, where A is the wavelength, an absorption spectrum 
@ ( E )  is the most convenient source for @(E)-values. The 6 ( E )  values can be calculated 
from the @ ( E )  using the K-amers-Kmnig transform if @ ( E )  is known over a wide enough 
energy range. For calculations near the Kedge of a given material, the knowledge of @ ( E )  
between the LI edge and about 5-10 times the K-edge energy is usually sufficient. We 
denote the Kramers-Kronig relation that transforms the @ ( E )  values to the 8 ( E )  values 
by KK: 6 = KK(@). Above 
the absorption edge energy @ ( E )  can be split into a smooth (A) and an oscillatory 
part (A@): @ = @O + Ap. due to the linearity of the Garners-Kronig transform we 
can write: KK(@) = KK(@o) + KK(A@). The smooth part of 6 can be defined as: 
80 = KK&) and the oscillatory part as: A6 = KK(A@). This can be justified by calculating 
AS1 = KKV) - KK&) and AS2 = KK(Ap) separately, where A61 = A&. Therefore, 
the functions A8(E) and A@(E) form a Kramers-Kronig transform pair. The p ( E ) ,  S(E), 
A@(E) and A6(E) values for nickel are shown in figures 2(a) and (b) ,  respectively. 

The inverse transform is then given by @ = KK-'(6), 
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FigureZ. (a)SandBasrunctionsofenerpy. TheB(E)  values wereobtained fromatransmission 
uws spect" with a nickel foil. 6 ( E )  is the KramemKronig Uansform of p(E).  Dashed 
smooth parrs of 6 and ,8 (6" and BO) above the absorption edge energy. (b) Fine structures in 8 :  
A6 =6 - SO and B :  AD =@-BO. 

The calculation of AR(E) is straightforward, if 6 and @ values are known: A R  = 
R(8, p )  - R(60, A), where R is given by equation (1). However, such a simple formula 
cannot be given in those cases, where only &(E) and po(E)  are known and AR as a 
function of A8 and A@ has to be found. 

In the first order, AR can be written as 

a R  
AR = A R ~ ~ ~ ~ ~  = EA, + -AB 

as afi (3) 

where the partial derivatives are calculated for 6 = 80 and j3 = 60. However, comparisons of 
calculated exact reflectivities with those given by equation (3) show that this approximation 
Kvalid only for glancing angles significantly below 0,. As shown in figure 3, both partial 
derivatives, as well as their ratio, have a~strong energy dependence. 
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Figure 3. Partial derivatives of reflectivity R for 6 = 60 
and p = as functions of energy calculated for calculated nickel reflectivity h e  struchm. 
B = 3.5 mrad using the Fresnel equation. 

F l g u ~  4. Weighting factors a and b obtained with 

In c o n m t  to equation (3). a linear ansatz for AR(E) ,  with energy independent 
weighting factors a and b, yields a significantly better approximation 

ARqpmx. =a A8 + b AB. (4) 

For a given substance, the numbers a and b depend only on the glancing/&gle. The 
approximation given by equation (4) is applicable for glancing angles below as well as 
above the critical angle. The determination of a and b for a given substance can be 
achieved according to the following procedure 

(i) recording of the EXAFS spectrum in transmission from a model compound, 
(ii) determination of B(E) from this spectrum and calculation of 8(E)  values using the 

(iii) calculation of R ( E )  and A R ( E )  with equation (1) and 
(iv) linear fit of the A R ( E )  function with the A8 and AB values obtained in step (ii). 

Figure 4 shows the a and b values as functions of 0 obtained for the reflectivity fine 
structures calculated with the data from figures 2(a) and ( b ) .  Each pair of numbers a and 
b is the result of a separate run of the fit procedure using the same A g ( E )  values and the 
corresponding A s ( E )  values. 

The relative error of the approximation (4) for a spectrum with N data points can be 
defined as 

Kramers-Kronig transform, 

where i is the number of the data point and AR is the true reflectivity fine structure. The 
fit errors as a function of the glancing angle for the calculated nickel reflectivity spectra are 
shown in figure 5. The error has its maximum value of about 0.12 in the vicinity of e,, but 
is significantly smaller for all other angles. Figure 6 shows AR and ARappmx, = aA6+bA@ 
for the angle with the maximum fit error. The approximation is acceptable also in this worst 
case. 

The ratio b / a  describes the relative AB and A8 contribution to AR. As can be seen 
in figure 7, this ratio changes significantly with 0. Whereas the A8 contribution is greater 
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Figure 5. Fit errors as defined by equation (5) for data 
in figure 4. 

Figure 6. Calculated nickel reflectivity fine srmclure 
AR (dashed) and the result of a linear fit using A6 and 
Ag values (solid). 

than zero for all angles, that of AB vanishes at O* N 7.9 mrad. Therefore, the reflectivity 
recorded at 0* has-within this approximation-a line structure which is proportional to 
A6 with a fit error of about 0.07. The inverse Kramers-Kronig transform then yields, to 
a constant factor, Ap. 0’ is the only angle at which the reflectivity fine structure reveals 
that of the absorption coefficient. 
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Figure 7. Approximative relative A.6 and AS Figure 8. aRja.6 for .6 = as a function of glancing 
contribution (b /a )  for calculated nickel AR data 5 angle 5 a fixed energy value. In conmast to aR/aS, 
glancing angles beween 0 and 30 mrad. bla vanishes aRja.0 vanishes at a specific glancing angle 00. 
5 0 7.9 mrad, 3t this angle AR is proporlional 
exclusively to AS, 

Though the approximation given by equation (3) is applicable only for 0 < e,, an 
approximate value for O* can be obtained from the properties of the partial derivative 
a R / a g  as a function of energy and as a function of 0. As shown in figure 8, the partial 
derivative calculated for 6 = 60 and ,9 = as a function of 0 for a fixed energy value 
vanishes at a certain angle 00. In contrast to that, aR/% is positive for all 0 0. In 
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Figurr 10. Original AB(E) function and the values 
restored from h e  calculated nickel reflectivity fine 
smcLure for 0 = 6.5 mrad using equation (9). 

figure 9, 00 values as a function of energy are shown. The value of 00 scatters in the 
Ni-Ems energy range about a mean value with 00," Q". 

The relation A R  2 a A 6 +  b h g  can be used for the calculation of the Fourier transform 
(FT) of At?(&), where & is the wavevector. We note first, that F?'(Ag) is a complex valued 
function in the distance ( r )  space. Then, with A8 = K K ( A ~ )  we obtain [7] 

From equations (4) and (6). then follows 

Im(AR)I = (a2 + b2)"21F1.(Ag)l. (7) 

Due to the angle dependence of a and b (as shown in figure 4 and according to equation (7)). 
the magnitude of the Fourier transform of AR depends strongly on the glancing angle. Such 
angle dependence is also experimentally observed. Although the magnitude of IFT(AR)I 
considerably varies with the angle, its shape is for all angles approximately the same as that 
of Im(Ag)l. Therefore, for a homogeneous specimen the magnitude of the XRFS Fourier 
transform is, to a constant factor, approximately equal to that of the specimen EXAFS- 
independent of the glancing angle at which the spectrum was recorded. If, on the other 
hand, the observed shape of JFT(AR)J does change with the glancing angle, then there 
is a structural inhomogeneity within the specimen x-ray penetration depth. The Fourier 
transform of A R  is therefore a valuable tool in connection with the x-ray reflectivity fine 
smcture spectroscopy. 

3. EXAFS extraction 

With the approximation given by equation (4), A g ( E )  can be extracted from the reflectivity 
data if the weighting factors a and b are known. We note first, as a consequence of the 
properties of the Hilbert transform, that the Kramers-Kronig transform of A8 is given by 
KK(A8) -Ag. 
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If the Kramers-Kronig transform is performed for both sides of equation (4). then 

KK(AR) W b A8 - a  AB. (8) 

From equations (4) and (8) we then obtain 

A g ( E )  4 - (bAR(E) - aKK(AR(E))). (9) a2 + b? 
Equation (9) can be applied for the extraction of the EXAFS from the measured XRFS if 

alternatively, using results of a numerical simulation and 
(i) the weighting factors a and b were obtained with a model compound data or, 

(ii) the specimen is homogeneous in the range of the x-ray penetration depth. 

In figure 10, the original AB(E)  data are compared with those calculated with 
equation (9). The reflectivity fine structure for this comparison was calculated with nickel 
data from figures Z(u) and (6) for 0 = 6.5 mad. In figure 11, the magnitudes of both 
Fourier transforms are depicted. The agreement between the original and the extracted Ap 
data is reasonably good despite the fact, that the fit emor has a maximum at 0 = 6.5 mrad. 
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Figure 11. Magnimdes of the Fourier ansfoms for 
the original and the restored A,9(E) data. 

Figure 12. X-ray peneuation deprhs for nickel for the 
glancing angles Q = 3.3 mrad and B = 7.7 m d ,  
respectively, as a function of energy. 

In this context, it can be noted that oscillatory functions like AD@) and AR(k)  can 
be very fastly Kramers-Kronig transformed using the fast Fourier transform (FFT). With 
m(8) from equation (6), the Kramers-Kronig transform of Ap is given by KK(AB) = 
E-' [E(A8)]. 

4. Example 

The a and b values obtained with the simulated XRPs data can be applied to the experimental 
reflectivity data shown in figures l(a) and (b). Although the penetration depths for 
0 = 3.3 mrad and 0 = 7.7 mrad differ strongly, they vary only moderately at a fixed 
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angle as functions of the energy in the EXAFS region above the absorption edge (figure 12). 
It is well known, that metals surfaces are spontaneously covered with a thin oxide layer. 
We estimated its thickness in the w e  of the nickel specimen to about 0.5 nm. Therefore, 
due to the low penetration depth of x-rays of about 2.5 nm at 3.3 mrad the reflectivity is 
slightly influenced by the oxide layer at that angle with almost unchanged EXAFS structure 
(figure 13(a)). At 7.7 nuad, the m s  transformed with equation (9) is very similar to the fine 
structure in @ calculated with data obtained from a metal foil in transmission (figure 13(b)). 
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Figure 13. Origim! A g ( E )  function and the values restored from the mwured  nickel reflectivity 
fine swclure for B = 3.3 mnd (a) and B = 7.7 mrad (6) using equation (9). 

5. Conclusions 

The x-ray reflectivity fine structure for homogeneous materials can be, to a good 
approximation, described as a linear superposition of the fine structures in the real and the 



X-ray reflectiviry jine structure 3787 

imaginary part of the refractive index A6 and A,5’, respectively. For a specific angle above 
the critical angle, the reflection fine structure is proportional to A8 only, the Kramers-Kronig 
transform of which is, to a constant factor, AB. At all other angles, A,9 can be obtained 
from the XRFS using a simple formula. For all glancing angles l ~ r ( A R ) l  is approximately 
proportional to Im(A,5’)[. 
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